Popis: |
For decades, precisely machining silicon has been critical for the success of the semiconductor industry. This has traditionally been done through wet chemical etching, but in the pursuit of integrating photonics devices on a single chip, other techniques are worth exploring. This quest opens up interest in finding a non-wet, non-contact, arbitrary-shape milling technique for silicon. In this paper, we present our latest work in the laser micromachining of silicon. A kilohertz-repetition-rate diode-pumped Nd:YLF laser (in infrared, green or ultraviolet modes) is focused on the surface of silicon wafers in a chlorine atmosphere for an enhanced magnitude and control of the etching rate. In the chlorine atmosphere, much less debris is deposited on the surface around the cut, sub-damage threshold machining is achieved for a better control of the etching depth, and etching rates ranging from 20-300,000 micron-cube/s have been measured. In particular, the use of an infrared laser beam is singled out, along with the advantages that it holds. Results of simulations highlight the particular characteristics of the various wavelength chosen for the machining. |