Vanishing at infinity on homogeneous spaces of reductive type

Autor: Bernhard Krötz, Henrik Schlichtkrull, Eitan Sayag
Rok vydání: 2016
Předmět:
Zdroj: Compositio Mathematica. 152:1385-1397
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x16007399
Popis: Let $G$ be a real reductive group and $Z=G/H$ a unimodular homogeneous $G$ space. The space $Z$ is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations $L^{p}(Z)$ vanish at infinity, $1\leqslant p. For $H$ connected we show that $Z$ satisfies VAI if and only if it is of reductive type.
Databáze: OpenAIRE