Vanishing at infinity on homogeneous spaces of reductive type
Autor: | Bernhard Krötz, Henrik Schlichtkrull, Eitan Sayag |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Algebra and Number Theory media_common.quotation_subject 010102 general mathematics Vanish at infinity Reductive group Type (model theory) Infinity Space (mathematics) 01 natural sciences Unimodular matrix Homogeneous 0103 physical sciences Homogeneous space 010307 mathematical physics 0101 mathematics media_common Mathematics |
Zdroj: | Compositio Mathematica. 152:1385-1397 |
ISSN: | 1570-5846 0010-437X |
DOI: | 10.1112/s0010437x16007399 |
Popis: | Let $G$ be a real reductive group and $Z=G/H$ a unimodular homogeneous $G$ space. The space $Z$ is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations $L^{p}(Z)$ vanish at infinity, $1\leqslant p. For $H$ connected we show that $Z$ satisfies VAI if and only if it is of reductive type. |
Databáze: | OpenAIRE |
Externí odkaz: |