Metal-organic frameworks in cooling and water desalination: Synthesis and application
Autor: | Mohamed Ghazy, Ahmed Rezk, A.E. Zohir, Ramy H. Mohammed, Ehab S. Ali, Ahmed A. Askalany, Mohammad Ali Abdelkareem, Muhammad Sultan, Abdul Ghani Olabi |
---|---|
Rok vydání: | 2021 |
Předmět: |
Energy demand
Materials science Renewable Energy Sustainability and the Environment Nanoporous 020209 energy Sorption Nanotechnology 02 engineering and technology Desalination Adsorption 0202 electrical engineering electronic engineering information engineering System level Metal-organic framework Water desalination |
Zdroj: | Renewable and Sustainable Energy Reviews. 149:111362 |
ISSN: | 1364-0321 |
Popis: | Energy-efficient alternative desalination and cooling systems are pivotal in addressing the incredible increase in energy and water demands worldwide. Sorption-based technology is a unique system that could help in solving the energy and water crisis and cut down the overall carbon footprint. Such systems’ performance relies on the adsorption characteristics of the employed nanoporous adsorbent. Although different nanoporous materials were developed, metal-organic frameworks (MOFs) are fast becoming a key working substance in water capture applications due to their interesting adsorption characteristics. Owing to the chemical tunability of MOFs, scientists developed thousands of MOFs in the last few decades. With the increasing interest in MOFs, this review paper provides a comprehensive survey of MOFs adsorbents and their roles in cooling and water desalination systems. Herein, three aspects are covered, the synthesis processes, the adsorption characteristics, and the implementation of MOFs at the system level. Many challenges are discussed, such as mass production, the energy demand for synthesis, and the chemical modulation of MOFs to enhance their adsorption characteristics. Many MOFs are presented, but the sorption characteristics of most of them have not been tested yet. Subsequently, a small number of the presented MOFs have been employed in sorption applications. Accordingly, a gap should be filled to test and employ the MOFs in sorption applications. |
Databáze: | OpenAIRE |
Externí odkaz: |