On time-periodic solutions to parabolic boundary value problems
Autor: | Jonas Sauer, Mads Kyed |
---|---|
Rok vydání: | 2018 |
Předmět: |
Partial differential equation
Time periodic General Mathematics 010102 general mathematics Mathematics::Analysis of PDEs Mathematics::Spectral Theory Type (model theory) 01 natural sciences Operator (computer programming) 0103 physical sciences Applied mathematics 010307 mathematical physics Boundary value problem 0101 mathematics Nirenberg and Matthaei experiment Mathematics |
Zdroj: | Mathematische Annalen. 374:37-65 |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-018-1721-9 |
Popis: | Time-periodic solutions to partial differential equations of parabolic type corresponding to an operator that is elliptic in the sense of Agmon–Douglis–Nirenberg are investigated. In the whole- and half-space case we construct an explicit formula for the solution and establish coercive $$L^{p}$$ estimates. The estimates generalize a famous result of Agmon, Douglis and Nirenberg for elliptic problems to the time-periodic case. |
Databáze: | OpenAIRE |
Externí odkaz: |