A Sufficient Condition for Function Space Controllability of a Linear Neutral System
Autor: | Hernan Rivera Rodas, C. E. Langenhop |
---|---|
Rok vydání: | 1978 |
Předmět: | |
Zdroj: | SIAM Journal on Control and Optimization. 16:429-435 |
ISSN: | 1095-7138 0363-0129 |
DOI: | 10.1137/0316028 |
Popis: | A proof is given for the following conjecture. When ${\operatorname{rank}}[b,A_{ - 1} b, \cdots ,A_{ - 1}^{n - 1} b] = n$, a sufficient condition for function space controllability of $\dot x(t) = A_{ - 1} \dot x(t - h) + A_0 x(t) + A_1 x(t - h) + bu(t)$ is that $K(\lambda )\zeta (e^{ - \lambda h} ) \ne 0$ for all complex $\lambda $, where $K(\lambda )$ is a $n \times n$ polynomial matrix in $\lambda $ constructed from $A_{ - 1} $, $A_0 $, $A_1 $, b and $\zeta (S)$ is the transpose of $[1,S, \cdots ,S^{n - 1} ]$. |
Databáze: | OpenAIRE |
Externí odkaz: |