Compensatory responses in the aging hippocampal serotonergic system following neurodegenerative injury with 5,7-dihydroxytryptamine

Autor: B. Jane Keck, Lynn W. Maines, Ashish Dugar, Stephen H. Miller, Joan M. Lakoski, Rashid Njai
Rok vydání: 2000
Předmět:
Zdroj: Synapse. 39:109-121
ISSN: 1098-2396
0887-4476
DOI: 10.1002/1098-2396(200102)39:2<109::aid-syn2>3.0.co;2-b
Popis: This study utilized a multidisciplinary approach to examine injury-induced compensatory responses in the aging hippocampal serotonin transporter (5-HTT), a membrane protein implicated in a variety of neurodegenerative disorders. Age-dependent cellular, anatomical, and physiological changes of the 5-HTT were evaluated in female Fischer 344 rats (2 and 17 months) following denervation of the serotonergic afferents (fimbria-fornix and cingulum bundle) to the dorsal hippocampus using the neurotoxicant 5,7-dihydroxytryptamine (5,7-DHT). Seven days following 5,7-DHT administration, a uniform loss of the hippocampal 5-HTT immunoreactivity was observed in both age groups. However, at 21 days 5-HTT immunoreactivity in young 5,7-DHT-treated animals was similar to control levels, indicative of recovery, while older animals exposed to 5,7-DHT did not show recovery of hippocampal 5-HTT expression. 5-HTT binding site density, as determined by quantitative autoradiography ([3H]citalopram), supported the immunohistochemical results by demonstrating a recovery of 5-HTT binding sites in young, but not old animals, at 21 days following the lesion (P < 0.001). Furthermore, cellular electrophysiological function of hippocampal CA1 pyramidal neurons in 3- and 18-month-old F344 rats at 21 days following 5,7-DHT or vehicle treatment were assessed using in vivo microiontophoretic application of serotonin (5-HT). Independent of changes in sensitivity to the inhibitory effects of 5-HT application, the time to recovery of cell firing following application of 5-HT was significantly increased in the 18-month 5,7-DHT group compared to the 18-month vehicle and 3-month 5,7-DHT groups (60 and 59% increases, respectively; P < 0.05). Overall, these series of studies comprise a model which can be used to identify cellular events underlying both the formation of injury-induced compensatory processes in younger animals and the lack thereof with advancing age. Synapse 39:109–121, 2001. © 2001 Wiley-Liss, Inc.
Databáze: OpenAIRE