VEGAS as a Platform for Facile Directed Evolution in Mammalian Cells

Autor: Olsen, R.H.J., Singh, D., Cockrell, A.S., Strachan, R.T., White, K., English, J.G., Wacker, D., Lansu, K., Roth, B.L., Patel, M.
Rok vydání: 2019
DOI: 10.17615/48da-a525
Popis: Directed evolution, artificial selection toward designed objectives, is routinely used to develop new molecular tools and therapeutics. Successful directed molecular evolution campaigns repeatedly test diverse sequences with a designed selective pressure. Unicellular organisms and their viral pathogens are exceptional for this purpose and have been used for decades. However, many desirable targets of directed evolution perform poorly or unnaturally in unicellular backgrounds. Here, we present a system for facile directed evolution in mammalian cells. Using the RNA alphavirus Sindbis as a vector for heredity and diversity, we achieved 24-h selection cycles surpassing 10−3 mutations per base. Selection is achieved through genetically actuated sequences internal to the host cell, thus the system's name: viral evolution of genetically actuating sequences, or “VEGAS.” Using VEGAS, we evolve transcription factors, GPCRs, and allosteric nanobodies toward functional signaling endpoints each in less than 1 weeks’ time. © 2019 Elsevier Inc.The VEGAS system is a platform for directed evolution, a method for engineering DNA sequences, in mammalian cells. The system is highly mutagenic, facile, and self-contained, requiring no in vitro handling during evolution cycles. As a result, robust evolution campaigns can be run within the context of a mammalian cell signaling environment. We perform three such campaigns as a proof-of-concept: evolving a transcription factor, a G-protein coupled receptor, and llama-derived nanobodies toward specific in vivo activities. © 2019 Elsevier Inc.
Databáze: OpenAIRE