Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses
Autor: | D.T. Gawne, Jean Guilment, Nora Iturraran, Yuqing Bao, Karine Huraux |
---|---|
Rok vydání: | 2018 |
Předmět: |
010302 applied physics
Materials science chemistry.chemical_element 02 engineering and technology 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Miscibility Pyrophosphate Electronic Optical and Magnetic Materials Phosphate glass chemistry.chemical_compound symbols.namesake Chemical engineering chemistry 0103 physical sciences Materials Chemistry Ceramics and Composites symbols Degradation (geology) Fourier transform infrared spectroscopy 0210 nano-technology Tin Glass transition Raman spectroscopy |
Zdroj: | Journal of Non-Crystalline Solids. 489:64-70 |
ISSN: | 0022-3093 |
DOI: | 10.1016/j.jnoncrysol.2018.03.013 |
Popis: | FTIR and Raman spectroscopy indicate the glass structure during synthesis of tin fluoride phosphate glass was pyrophosphate, mainly built up from Q1 end groups with a low concentration of Q2 polymeric chains. However, sub-optimal melting produced significantly higher concentrations of orthophosphate Q0 structural units. The variationsinNHandP-OHvibrationsinthespectrarevealedthatacriticaltimeandtemperatureofmeltingwere necessary for the conversion of NH4H2PO2 to produce sufficient P2O5 for glass forming. During melting, P2O5 and SnF2 form a low-temperature melt, which facilitates melting of the SnO and promotes the formation of a more stable glass structure. The fluorine breaks the PeOeP bonds and induces depolymerisation. The density of the glass reached a maximum at 450°C for 25min driven by the need for conversion of NH4H2PO4 to P2O5 and miscibility of SnO in the melt. Inadequate melting times and temperatures gave low Tg values because of weak FeSn and FeP linkages. Glass stability improved with melting due to increased P2O5 and SnO miscibility enabling stronger SneOeP linkages. The results show that melting conditions during synthesis strongly influence critical glass properties and future industrial scale-up will require an understanding of optimum processing. |
Databáze: | OpenAIRE |
Externí odkaz: |