graded identities of the Lie algebras in characteristic 2
Autor: | CLAUDEMIR FIDELIS, PLAMEN KOSHLUKOV |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematical Proceedings of the Cambridge Philosophical Society. 174:49-58 |
ISSN: | 1469-8064 0305-0041 |
DOI: | 10.1017/s0305004122000123 |
Popis: | Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis. |
Databáze: | OpenAIRE |
Externí odkaz: |