graded identities of the Lie algebras in characteristic 2

Autor: CLAUDEMIR FIDELIS, PLAMEN KOSHLUKOV
Rok vydání: 2022
Předmět:
Zdroj: Mathematical Proceedings of the Cambridge Philosophical Society. 174:49-58
ISSN: 1469-8064
0305-0041
DOI: 10.1017/s0305004122000123
Popis: Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.
Databáze: OpenAIRE