Popis: |
One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results. |