New developments in nanopore research—from fundamentals to applications

Autor: Mathias Winterhalter, Joshua B. Edel, Tim Albrecht
Rok vydání: 2010
Předmět:
Zdroj: Journal of Physics: Condensed Matter. 22:450301
ISSN: 1361-648X
0953-8984
DOI: 10.1088/0953-8984/22/45/450301
Popis: Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. And while the prospect of DNA sequencing continues to be a major driving force, other applications with potentially similar impact begin to emerge, for example the detection of small molecules, proteins, protein/protein and protein/DNA complexes, and RNA to name just a few. It has also become apparent that both classes of nanopore devices have intrinsic advantages and disadvantages; hybrid structures combining the better of the two worlds would be a logical consequence and are beginning to appear in the literature. Many other highly innovative ideas and concepts continue to emerge and the number of nanopore-related publications has increased drastically over recent years. We found that more than 100 research groups worldwide are active in this area; several commercial settings are in the process of translating fundamental research into real-life applications. We therefore felt that now is the right time to showcase these new developments in a special issue: to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities. The title 'New developments in nanopore research—from fundamentals to applications' in some way reflects these ambitions and, even though not everyone invited was able to contribute, we were able to assemble 34 high-quality research papers from all over the world. We would like to acknowledge and thank all the contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Ms Natalia Goehring for the beautiful cover artwork. Finally, to the readers, we hope you find this special issue a valuable source of information and insight into the field of nanopores. New developments in nanopore research—from fundamentals to applications contents Mathematical modeling and simulation of nanopore blocking by precipitation M-T Wolfram, M Burger and Z S Siwy Protein conducting nanopores Anke Harsman, Vivien Kruger, Philipp Bartsch, Alf Honigmann, Oliver Schmidt, Sanjana Rao, Christof Meisinger and Richard Wagner Electrically sensing protease activity with nanopores Mikiembo Kukwikila and Stefan Howorka Electrical characterization of DNA-functionalized solid state nanopores for bio-sensing V Mussi, P Fanzio, L Repetto, G Firpo, P Scaruffi, S Stigliani, M Menotta, M Magnani, G P Tonini and U Valbusa Automatable lipid bilayer formation and ion channel measurement using sessile droplets J L Poulos, S A Portonovo, H Bang and J J Schmidt Critical assessment of OmpF channel selectivity: merging information from different experimental protocols M L Lopez, E Garcia-Gimenez, V M Aguilella and A Alcaraz Chemically modified solid state nanopores for high throughput nanoparticle separation Anmiv S Prabhu, Talukder Zaki N Jubery, Kevin J Freedman, Rafael Mulero, Prashanta Dutta and Min Jun Kim Changes in ion channel geometry resolved to sub-angstrom precision via single molecule mass spectrometry Joseph W F Robertson, John J Kasianowicz and Joseph E Reiner Entropic transport of finite size particles W Riefler, G Schmid, P S Burada and P Hanggi Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel Philip A Gurnev, Daniel Harries, V Adrian Parsegian and Sergey M Bezrukov Detection of urea-induced internal denaturation of dsDNA using solid-state nanoporesn Alon Singer, Heiko Kuhn, Maxim Frank-Kamenetskii and Amit Meller Translocation events in a single-walled carbon nanotube Jin He, Hao Liu, Pei Pang, Di Cao and Stuart Lindsay Probing DNA with micro- and nanocapillaries and optical tweezers L J Steinbock, O Otto, D R Skarstam, S Jahn, C Chimerel, J L Gornall and U F Keyser Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes Zhijun Jiang, Mirna Mihovilovic, Jason Chan and Derek Stein Fabrication and electrical characterization of a pore–cavity–pore device D Pedone, M Langecker, A M Munzer, R Wei, R D Nagel and U Rant Use of tunable nanopore blockade rates to investigate colloidal dispersions G R Willmott, R Vogel, S S C Yu, L G Groenewegen, G S Roberts, D Kozak, W Anderson and M Trau Facilitated translocation of polypeptides through a single nanopore Robert Bikwemu, Aaron J Wolfe, Xiangjun Xing and Liviu Movileanu Mechanistic insight into gramicidin-based detection of protein–ligand interactions via sensitized photoinactivation Tatyana I Rokitskaya, Michael X Macrae, Steven Blake, Natalya S Egorova, Elena A Kotova, Jerry Yang and Yuri N Antonenko Sequence-dependent unfolding kinetics of DNA hairpins studied by nanopore force spectroscopy Stephan Renner, Andrey Bessonov, Ulrich Gerland and Friedrich C Simmel Hydration properties of mechanosensitive channel pores define the energetics of gating A Anishkin, B Akitake, K Kamaraju, C-S Chiang and S Sukharev Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers Andy Sischka, Andre Spiering, Maryam Khaksar, Miriam Laxa, Janine Konig, Karl-Josef Dietz and Dario Anselmetti Force fluctuations assist nanopore unzipping of DNA V Viasnoff, N Chiaruttini, J Muzard and U Bockelmann Control and reversal of the electrophoretic force on DNA in a charged nanopore Binquan Luan and Aleksei Aksimentiev The properties of the outer membrane localized Lipid A transporter LptD Raimund Haarmann, Mohamed Ibrahim, Mara Stevanovic, Rolf Bredemeier and Enrico Schleiff Structural and dynamical properties of the porins OmpF and OmpC: insights from molecular simulations Amit Kumar, Eric Hajjar, Paolo Ruggerone and Matteo Ceccarelli Dehydration and ionic conductance quantization in nanopores Michael Zwolak, James Wilson and Massimiliano Di Ventra Current oscillations generated by precipitate formation in the mixing zone between two solutions inside a nanopore Erik C Yusko, Yazan N Billeh and Michael Mayer Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing Mariam Ayub, Aleksandar Ivanov, Jongin Hong, Phillip Kuhn, Emanuele Instuli, Joshua B Edel and Tim Albrecht The distribution of DNA translocation times in solid-state nanopores Jiali Li and David S Talaga Crowding effects in non-equilibrium transport through nano-channels A Zilman and G Bel Permeation through nanochannels: revealing fast kinetics Kozhinjampara R Mahendran, Pratik Raj Singh, Jurgen Arning, Stefan Stolte, Ulrich Kleinekathofer and Mathias Winterhalter LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM Frauke Mager, Lucie Sokolova, Julia Lintzel, Bernhard Brutschy and Stephan Nussberger Evidence that small proteins translocate through silicon nitride pores in a folded conformation Radu I Stefureac, Dhruti Trivedi, Andre Marziali and Jeremy S Lee Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes D Z Fang, C C Striemer, T R Gaborski, J L McGrath and P M Fauchet
Databáze: OpenAIRE