Selection of the Informative Input Parameters for the Inverse Neural-Network Models of Observed Systems

Autor: A. S. Magas, N. А. Guk, N. І. Obodan
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Sciences. 231:678-689
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-018-3844-7
Popis: We consider the problem of determination of the parameters of a measurement grid, which guarantees the exactness and stability of the solution of the inverse problem. The choice of the points of measurements is performed under the assumption of existence of the most informative data. We present the results illustrating the influence of the number of measurement points on the data of reconstruction of the parameters of the load function acting upon the cylindrical shell in a strip located along the length of the shell.
Databáze: OpenAIRE