A ZERO- LAW FOR COSINE FAMILIES

Autor: Jean Esterle
Rok vydání: 2017
Předmět:
Zdroj: Journal of the Australian Mathematical Society. 104:195-217
ISSN: 1446-8107
1446-7887
DOI: 10.1017/s1446788717000118
Popis: Let$a\in \mathbb{R}$, and let$k(a)$be the largest constant such that$\sup |\text{cos}(na)-\cos (nb)|for$b\in \mathbb{R}$implies that$b\in \pm a+2\unicode[STIX]{x1D70B}\mathbb{Z}$. We show that if a cosine sequence$(C(n))_{n\in \mathbb{Z}}$with values in a Banach algebra$A$satisfies$\sup _{n\geq 1}\Vert C(n)-\cos (na).1_{A}\Vert , then$C(n)=\cos (na).1_{A}$for$n\in \mathbb{Z}$. Since$\!\sqrt{5}/2\leq k(a)\leq 8/3\!\sqrt{3}$for every$a\in \mathbb{R}$, this shows that if some cosine family$(C(g))_{g\in G}$over an abelian group$G$in a Banach algebra satisfies$\sup _{g\in G}\Vert C(g)-c(g)\Vert for some scalar cosine family$(c(g))_{g\in G}$, then$C(g)=c(g)$for$g\in G$, and the constant$\!\sqrt{5}/2$is optimal. We also describe the set of all real numbers$a\in [0,\unicode[STIX]{x1D70B}]$satisfying$k(a)\leq \frac{3}{2}$.
Databáze: OpenAIRE