Micro-hotplates for high-throughput thin film processing and in situ phase transformation characterization

Autor: Alfred Ludwig, Alan Savan, Sigurd Thienhaus, M. Ehmann, S. Hamann
Rok vydání: 2008
Předmět:
Zdroj: Sensors and Actuators A: Physical. 147:576-582
ISSN: 0924-4247
Popis: This paper presents the use of micro-hotplates (MHPs) as thermal processing and in situ characterization platforms for phase transformations in thin films. MHPs are fabricated by microsystem technology processes and consist of a SiO2/Si3N4 membrane (app. 1 μm) supported by a bulk Si frame. Several embedded Pt thin films serve as heater and electrical measurement electrodes. It is shown that the MHPs have unique properties for the controlled annealing of thin film materials (up to 1270 K), as the annealing temperature and heating/cooling rates can be precisely controlled by in situ measurements. These rates can be extremely high (up to 104 K/s), due to the low thermal mass of MHPs. The high cooling rates are especially useful for the fabrication of metastable phases (e.g. Fe70Pd30) by quenching. By measuring the resistivity of a thin film under test in situ as a function of the MHP temperature, microstructural changes (e.g. phase transformations) can be detected during heating and cooling cycles. In this paper, examples are presented for the determination of phase transitions in thin films using MHPs: the solid–liquid–gas phase transition (Al), the ferromagnetic–paramagnetic phase transition (Fe–Pt) and martensitic transformations (Ni–Ti–Cu, Fe–Pd). Furthermore, it is demonstrated that crystallization processes from amorphous to crystalline (Ni–Ti–Cu) can be detected with this method. Finally the application of MHPs in thin film combinatorial materials science and high-throughput experimentation is described.
Databáze: OpenAIRE