On the number of integer points in a multidimensional domain

Autor: Alexander S. Rybakov
Rok vydání: 2018
Předmět:
Zdroj: Discrete Mathematics and Applications. 28:385-395
ISSN: 1569-3929
0924-9265
Popis: We provide a new upper estimate for the modulus of the difference |Λ ∩ 𝓢| − voln(𝓢)/det Λ, where 𝓢 ⊂ ℝn is a set of volume voln(𝓢) and Λ ⊂ ℝn is a complete lattice with determinant det Λ. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities.
Databáze: OpenAIRE