On the number of integer points in a multidimensional domain
Autor: | Alexander S. Rybakov |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Discrete Mathematics and Applications. 28:385-395 |
ISSN: | 1569-3929 0924-9265 |
Popis: | We provide a new upper estimate for the modulus of the difference |Λ ∩ 𝓢| − voln(𝓢)/det Λ, where 𝓢 ⊂ ℝn is a set of volume voln(𝓢) and Λ ⊂ ℝn is a complete lattice with determinant det Λ. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities. |
Databáze: | OpenAIRE |
Externí odkaz: |