Essential Norms of Weighted Composition Operators from Hilbert Function Spaces into Zygmund-Type Spaces
Autor: | Flavia Colonna, Maria Tjani |
---|---|
Rok vydání: | 2015 |
Předmět: |
Mathematics::Functional Analysis
Hilbert series and Hilbert polynomial Pure mathematics Logarithm Mathematics::Complex Variables General Mathematics Mathematical analysis Mathematics::Classical Analysis and ODEs Hilbert space Hardy space Operator space symbols.namesake Compact space Bergman space Norm (mathematics) symbols Mathematics |
Zdroj: | Mediterranean Journal of Mathematics. 12:1357-1375 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-015-0560-0 |
Popis: | In this work, we provide an approximation of the essential norm of the weighted composition operators acting on a Hilbert function space and mapping into a Zygmund-type space, and give characterizations of the boundedness and compactness of such operators. Our results apply to a large class of weighted Hardy spaces, including the Hardy space H 2, the weighted Bergman space $${A^2_\alpha \,\, (\alpha \geq 1)}$$ , and the logarithmic Bergman space $${A^2_{\rm log}}$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |