No Transcendence Basis of ℝ over ℚ Can Be Analytic

Autor: Enrico Zoli
Rok vydání: 2005
Předmět:
Zdroj: Real Analysis Exchange. 30:311
ISSN: 0147-1937
DOI: 10.14321/realanalexch.30.1.0311
Popis: It has been proved by Sierpinski that no linear basis of $\mathbb{R}$ over $\mathbb{Q}$ can be an analytic set. Here we show that the same assertion holds by replacing ``linear basis'' with ``transcendence basis''. Furthermore, it is demonstrated that purely transcendental subfields of $\mathbb{R}$ generated by Borel bases of the same cardinality are Borel isomorphic (as fields). Following Mauldin's arguments, we also indicate, for each ordinal $\alpha$ such that $1\leq \alpha\lt\omega_1$ ($2\leq \alpha\lt\omega_1$), the existence of subfields of $\mathbb{R}$ of exactly additive (multiplicative, ambiguous) class $\alpha$ in $\mathbb{R}$.
Databáze: OpenAIRE