Autor: |
S. Shazia, G. Priyanka, C. Leena, K. Bhani, Faiz. A., R. Vasantharaja, H. G. Gowtham, S. Koushalya, C. Gourav, D. O. Monu, Y. Ajay, Hariprasad. P. |
Rok vydání: |
2020 |
Předmět: |
|
DOI: |
10.21203/rs.3.rs-27313/v1 |
Popis: |
Plants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. Present study aims to virtually screen these plant secondary metabolites (PMS) for their possible anti-SARS-CoV-2 properties targeting four protein/enzymes which determines viral pathogenesis. Results of molecular docking and data analysis revealed a unique pattern of structurally similar PSM interacting with the target protein. Among the top-ranked PSM with lower binding energy, >50% were triterpenoids against viral spike protein, >32% were flavonoids and their glycoside against Human transmembrane serine protease, >16% were flavonol glycosides and >16% were Anthocyanidine against viral main protease and >13% were flavonol glycoside against viral RNA dependet RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling drug-likeness characters as per Lipinski's rule. Natural occurrence, biotransformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Further, we hypothesized the use of selected PSM to cure the COVID-19 by inhibiting the process of viral host cell recognition and replication in host cell. However, these PSM needs thorough in vitro and in vivo evaluation before taking them to clinical trials. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|