The hexagonal chains with the first three maximal Mostar indices

Autor: Mingyao Zeng, Zikai Tang, Hongbo Hua, Hanyuan Deng, Qiqi Xiao
Rok vydání: 2021
Předmět:
Zdroj: Discrete Applied Mathematics. 288:180-191
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.08.036
Popis: The Mostar index of a graph G is defined as M o ( G ) = ∑ e = u v ∈ E ( G ) | n u − n v | , where n u denotes the number of vertices of G closer to u than to v , and n v denotes the number of vertices of G closer to v than to u . In this paper, we determine the first three maximal values of the Mostar index among all hexagonal chains with given number of hexagons, and characterize the corresponding extremal graphs by some transformations on hexagonal chains.
Databáze: OpenAIRE