The hexagonal chains with the first three maximal Mostar indices
Autor: | Mingyao Zeng, Zikai Tang, Hongbo Hua, Hanyuan Deng, Qiqi Xiao |
---|---|
Rok vydání: | 2021 |
Předmět: |
Combinatorics
010201 computation theory & mathematics Hexagonal crystal system Applied Mathematics 0211 other engineering and technologies Discrete Mathematics and Combinatorics 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Mathematics |
Zdroj: | Discrete Applied Mathematics. 288:180-191 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2020.08.036 |
Popis: | The Mostar index of a graph G is defined as M o ( G ) = ∑ e = u v ∈ E ( G ) | n u − n v | , where n u denotes the number of vertices of G closer to u than to v , and n v denotes the number of vertices of G closer to v than to u . In this paper, we determine the first three maximal values of the Mostar index among all hexagonal chains with given number of hexagons, and characterize the corresponding extremal graphs by some transformations on hexagonal chains. |
Databáze: | OpenAIRE |
Externí odkaz: |