Diagnostics of rolling bearings using artificial neural networks
Autor: | M V Suslov, A l V Bykov, A I Vinokur, V P Petrov, E G Bezzateeva, S N Litunov, G B Kulikov |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Physics: Conference Series. 1901:012027 |
ISSN: | 1742-6596 1742-6588 |
DOI: | 10.1088/1742-6596/1901/1/012027 |
Popis: | The vibration of bearings No. 60,206 with radial clearance of 0…0.45 mm is investigated. Analysis of the frequency response (FR) of vibration acceleration reveals information frequencies of 6 Hz, 15 Hz, 26 Hz, and 46 Hz, which coincide with the calculated values. The dependence of the vibration acceleration amplitude on the radial clearance for the specified frequencies is determined. The possibility of rolling bearing wear estimation by vibroacoustic diagnostic methods using artificial neural networks is proved. Diagnostic accuracy with the 4:4-3:1 MI network ranges from 75.6% for a radial clearance of 0.15 mm to 100% for a clearance of 0 mm. |
Databáze: | OpenAIRE |
Externí odkaz: |