Using bioacoustics to monitor gibbons

Autor: Paul F. Doherty, Thinh Tien Vu
Rok vydání: 2021
Předmět:
Zdroj: Biodiversity and Conservation. 30:1189-1198
ISSN: 1572-9710
0960-3115
Popis: Monitoring wildlife population trends is critical for the conservation of endangered species and measuring the efficacy of management activities. Recently, passive acoustic monitoring has emerged as a useful wildlife monitoring tool and automatic recorders have been used to detect the presence of gibbons in protected areas of Vietnam. However, these recording devices can be expensive, cumbersome, and difficult to operate in some areas with gibbons. Therefore, inexpensive, lightweight, and easily operated recording devices are needed for wildlife monitoring. In this study, we employed mobile smartphones to detect the presence and distribution, and to estimate the occurrence probability, of the northern yellow-cheeked crested gibbon (Nomascus annamensis) in Dakrong Nature Reserve (405.3 km2), Vietnam. We surveyed gibbons from February to July 2019, during the dry season, at 95 sites that were systematically spaced throughout the nature reserve. We used the software package, RAVEN, to analyze the sound data and to identify gibbon calls. We detected gibbon calls at 39 out of 95 recording sites. With these data and an occupancy model, we estimated, and examined the effects of environmental factors, on the occurrence probability. Assuming a 600 m detection distance, the model-averaged occurrence probability for the nature reserve was 0.44 (SE = 0.06). The area of rich (> 100 m3/ha) and medium (> 200 m3/ha) evergreen forest within 1 km of the recording posts was the most important predictor of, and positively correlated with, occurrence with less occurrence in poor, regrowth forest, plantations, or on bare land. Bioacoustic methods can be potentially used in large-scale gibbon surveys, and the technology is especially attractive given the low cost. Additional work on estimating detection distances and identifying individual gibbon groups using bioacoustics will be useful next steps.
Databáze: OpenAIRE