A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater

Autor: Nader Noroozi Pesyan, Amir Sheikhmohammadi, Esrafil Asgari, Bayram Hashemzadeh, Hassan Alamgholiloo, Hassan Hashemzadeh, Jaber Yeganeh
Rok vydání: 2021
Předmět:
Zdroj: Process Safety and Environmental Protection. 147:392-404
ISSN: 0957-5820
Popis: Utilization of the advanced oxidation process (AOP) for degradation of antibiotics into byproducts with low toxicity for enhancing the quality of drinking water and wastewater has remained a huge challenge for environmental aim. In this study, a nanocomposite based on Cobalt zeolite imidazolate framework (ZIF-67), and Fe3O4 nanoparticles (NPs) were prepared using the simple sol-gel method. In this nanocomposite, Fe3O4 NPs were used as an ideal platform for microporous ZIF-67 growth, aiming to create an efficient heterogeneous catalyst with magnetic separation for the activation of peroxymonosulfate (PMS) to expeditiously degrade ciprofloxacin (CIP) antibiotics. The catalytic activity of the proposed nanocomposite was systematically evaluated with several operational factors, such as nanocatalyst and oxidant dosage, initial pH, co-existing anions, and the stability of the catalyst. Furthermore, scavenging technique and electron spin resonance (ESR) demonstrate that the sulfate and hydroxyl radicals play a major role in the degradation process. The findings indicate that ZIF-67/Fe3O4 nanocomposite is a greener and more suitable option for large scale applications and creates new insights into the removal of contaminants from the ecosystem.
Databáze: OpenAIRE