Overconfidence undermines global wildlife abundance trends

Autor: Thomas Frederick Johnson, Andrew P Beckerman, Dylan Z Childs, Christopher A Griffiths, Pol Capdevila, Christopher F Clements, Marc Besson, Richard D. Gregory, Eva Delmas, Gavin Thomas, Karl Evans, Tom Webb, Rob Freckleton
Rok vydání: 2022
DOI: 10.1101/2022.11.02.514877
Popis: In the face of rapid global change and an uncertain fate for biodiversity, it is vital to quantify trends in wild populations. These trends are typically estimated from abundance time series for suites of species across large geographic and temporal scales. Such data implicitly contain phylogenetic, spatial, and temporal structure which, if not properly accounted for, may obscure the true magnitude and direction of biodiversity change. Here, using a novel statistical framework to simultaneously account for all three of these structures, we show that the majority of current abundance trends estimates among 10 high-profile datasets, representing millions of abundance observations, are likely unreliable or incorrect. Our new approach suggests that previous models are too simplistic, incorrectly estimating global abundance trends and often dramatically underestimating uncertainty, an aspect that is critical when translating global assessments into policy outcomes. Further, our approach also results in substantial improvements in abundance forecasting accuracy. Whilst our results do not improve the outlook for biodiversity, our framework does allow us to make more robust estimates of global wildlife abundance trends, which is critical for developing policy to protect our biosphere.
Databáze: OpenAIRE