Dual attention fusion UNet for COVID-19 lesion segmentation from CT images
Autor: | Yinjin Ma, Yajuan Zhang, Lin Chen, Qiang Jiang, Biao Wei |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of X-Ray Science and Technology. :1-17 |
ISSN: | 1095-9114 0895-3996 |
DOI: | 10.3233/xst-230001 |
Popis: | BACKGROUND: Chest CT scan is an effective way to detect and diagnose COVID-19 infection. However, features of COVID-19 infection in chest CT images are very complex and heterogeneous, which make segmentation of COVID-19 lesions from CT images quite challenging. OBJECTIVE: To overcome this challenge, this study proposes and test an end-to-end deep learning method called dual attention fusion UNet (DAF-UNet). METHODS: The proposed DAF-UNet improves the typical UNet into an advanced architecture. The dense-connected convolution is adopted to replace the convolution operation. The mixture of average-pooling and max-pooling acts as the down-sampling in the encoder. Bridge-connected layers, including convolution, batch normalization, and leaky rectified linear unit (leaky ReLU) activation, serve as the skip connections between the encoder and decoder to bridge the semantic gap differences. A multiscale pyramid pooling module acts as the bottleneck to fit the features of COVID-19 lesion with complexity. Furthermore, dual attention feature (DAF) fusion containing channel and position attentions followed the improved UNet to learn the long-dependency contextual features of COVID-19 and further enhance the capacity of the proposed DAF-UNet. The proposed model is first pre-trained on the pseudo label dataset (generated by Inf-Net) containing many samples, then fine-tuned on the standard annotation dataset (provided by the Italian Society of Medical and Interventional Radiology) with high-quality but limited samples to improve performance of COVID-19 lesion segmentation on chest CT images. RESULTS: The Dice coefficient and Sensitivity are 0.778 and 0.798 respectively. The proposed DAF-UNet has higher scores than the popular models (Att-UNet, Dense-UNet, Inf-Net, COPLE-Net) tested using the same dataset as our model. CONCLUSION: The study demonstrates that the proposed DAF-UNet achieves superior performance for precisely segmenting COVID-19 lesions from chest CT scans compared with the state-of-the-art approaches. Thus, the DAF-UNet has promising potential for assisting COVID-19 disease screening and detection. |
Databáze: | OpenAIRE |
Externí odkaz: |