Popis: |
The contact wear behavior of a dental ceramic composite containing 92 wt % silica glass and alumina filler particles in a polymeric resin matrix was examined. Because this composite is used for dental restorations, the tests were conducted under contact conditions that were relevant to those that exist in the mouth. Wear tests were conducted on a pin-on-disk tribometer with water as a lubricant. Results on wear volume as a function of load indicated two distinct regimes of wear. The wear volume increased slightly as the load was increased from 1 to 5 N. As the load was further increased to 10 N, the wear volume increased by one order of magnitude. At loads above 10 N (up to a maximum of 20 N), the wear volume was found to be independent of load. Examination of the wear tracks by SEM revealed that a surface film had formed on the wear tracks at all loads. Examination of these films by TEM showed that the films contained a mixture of small gamma-Al2O3 crystallites and glass particles. FTIR analysis of the adhered films indicated the presence of hydrated forms of silica and alumina, suggesting reaction of filler particles with water. Chemical analysis by ICP-MS of water samples collected after the wear tests confirmed the presence of Al and other elemental constituents of the filler particles. It is proposed that three simultaneous processes occur at the sliding contact: tribochemical reactions and film formation, dissolution of the reacted products, and mechanical removal of the film by microfracture. At low loads, wear occurs primarily by a tribochemical mechanism, i.e., formation and dissolution of the reaction products. At higher loads, wear occurs by a combination of tribochemical processes and mechanical detachment of the surface film. |