Investigation of Gainp Quantum Dots in the AlGaInP-Based Light Emitting Diodes

Autor: Hwa Sub Oh, Jong Min Park, Sung Hoon Jung, Hyung Joo Lee, Young Dae Cho, Kyung Nam Jun
Rok vydání: 2019
Zdroj: ECS Meeting Abstracts. :1313-1313
ISSN: 2151-2043
DOI: 10.1149/ma2019-02/30/1313
Popis: Recently, AlGaInP-based light emitting diodes (LEDs) have experienced an impressive evolution in both device performance and market volume. However, development of new applications is required in order to realize their full potential in areas such as use as a light source for auto focusing in digital cameras, special illumination for particular functions in agriculture, and in full color displays. To enlarge their utility in these applications, it is necessary to fabricate and understand a new structure capable of emitting longer wavelengths of around 700 nm. In particular, AlGaInP heterostructure LEDs are lattice-matched with respect to the GaAs substrate, which limits the emitting spectrum to around 650 nm at the longer peak wavelength side. To fabricate an LED structure capable of emitting at a 700 nm peak wavelength, the composition (x) of GaxIn1-xP material in the active layer requires a compressive strain of larger than 1 %. This large lattice mismatch, however, causes significant problems in terms of both growth and device properties due to the formation of defects. To overcome these problems, it is necessary to relieve the well strain via the formation of islands, referred to as a Stranski-Krastanow (S-K) growth mode, in order to prevent the generation of dislocations [1,2]. However, in AlGaInP-based LEDs emitting at a 700 nm peak wavelength, the effects of well strain on the epitaxial growth and the realization of device performance has yet to be extensively studied. In this study, we investigate the behaviors of morphological and optical characteristics on the composition of Ga0.33In0.67P material and demonstrate the performance of a device emitting at around 700 nm using quantum dot (QD)-based LEDs. Figure 1
Databáze: OpenAIRE