Crystallization mechanisms of cordierite glass-ceramics with 'surface-center' crystallization behavior

Autor: Chao Liu, Shengshuo Cao, Jian Ruan, Zhanmeng Zhang, Jianjun Han, Jing Wang, Wei Yu
Rok vydání: 2021
Předmět:
Zdroj: Journal of the European Ceramic Society. 41:6708-6721
ISSN: 0955-2219
Popis: Cordierite glass-ceramics usually begin to crystallize from the surface. As an efficient nucleating agent, TiO2 can promote the rapid transformation of glass to bulk crystallization, but it is easy to cause the increase of dielectric constant and light absorption. High crystallinity cordierite glass-ceramics were prepared by optimizing the heat treatment process without or with different nucleating agents in stoichiometric cordierite glasses. The results show that the crystallization mechanisms of glasses without and with ZrO2+P2O5 as nucleation agents are controlled by surface crystallization. While, the glass with TiO2+ZrO2+P2O5 as nucleation agents have the tendency to be bulk crystallization. The studied glasses are crystallized from surface and have different crystallization orientations with the inner glass. The thickness of crystalline layer increased with the increasing of heating temperatures, but the “surface-center” crystallization process cannot complete by further increasing heating temperatures because of softening deformation of glasses. At 1020 ℃, the glasses complete the “surface-center” crystallization for long durations. The glasses without nucleation agents and with ZrO2+P2O5 require 10 h, but the glass with TiO2+ZrO2+P2O5 complete for 5 h. Although all the three glasses complete the “surface-center” crystallization, the glasses with nucleation agents show the higher crystallinity upon the same heat treatments. Finally, glass-ceramics with excellent performance were obtained, for example, the Z1# glass-ceramic have the high microhardness ∼7.4 GPa, low thermal expansion coefficient ∼1.4☓10−6 ℃−1 at 20–300 ℃, and relatively high thermal conductivity ∼2.4 W/mK. It also exhibits low dielectric constant and loss, which was ∼4.5 and ∼1.2☓10−3 at 1 MHz, ∼ 4.9 and 2.3☓10−3 at 10.5 GHz..
Databáze: OpenAIRE