Flat panel CT detectors for sub-second volumetric scanning

Autor: Edward Shapiro, Richard E. Colbeth, Pieter Gerhard Roos, Ivan P. Mollov
Rok vydání: 2005
Předmět:
Zdroj: Medical Imaging 2005: Physics of Medical Imaging.
ISSN: 0277-786X
DOI: 10.1117/12.595631
Popis: This paper explores the potential of flat panel detectors in sub-second CT scanning applications. Using a PaxScan 4030CB with 600um thick CsI(Tl), a central section of the panel (16 to 32 rows), was scanned at frame rates up to 1000fps. Using this platform, fundamental issues related to high speed scanning were characterized. The offset drift of the imager over 60 seconds was found to be less than 0.014 ppm/sec relative to full scale. The gain stability over a 10 hour period is better than +/- .45%, which is at the resolution limit of the measurement. Two different types of lag measurements were performed in order to separate the photodiode array lag from the CsI afterglow. The panel lag was found to be 0.41% 1st frame and 0.054% 25th frame at 1000fps. The CsI(Tl) afterglow, however, is roughly an order of magnitude higher, dominating the lag for sub-second scans. At 1000fps the 1st frame lag due to afterglow was 3.3% and the 25th frame lag was 0.34%. Both the lag and afterglow are independent of signal level and each follows a simple power law evolution versus time. Reconstructions of anatomical phantoms and the CATPHAN 500 phantom are presented. With a 2 second, 1200 projection scan of the CATPHAN phantom at 600fps in 32 slice mode, using 120kVp and CTDI100 of 43.2mGy, 0.3% contrast resolution for a 6mm diameter target, can be visualized. In addition, 15lp/cm spatial resolution was achieved with a 2mm slice and a central CTDI100 of 10.8mGy.
Databáze: OpenAIRE