Global behavior for the classical Nicholson–Bailey model
Autor: | William T. Jamieson, Jenna Reis |
---|---|
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
Applied Mathematics 010102 general mathematics Mathematical analysis Mathematics::Classical Analysis and ODEs Fixed point 010603 evolutionary biology 01 natural sciences Quadrant (plane geometry) Physics::Popular Physics 0101 mathematics Nicholson–Bailey model Astrophysics::Galaxy Astrophysics Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 461:492-499 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2017.12.071 |
Popis: | This article investigates the global asymptotic behavior of the classical Nicholson–Bailey model [6] for λ > 1 . In particular, it is shown that the Nicholson–Bailey model has no periodic solutions in the first quadrant other than the fixed point ( x ¯ , y ¯ ) and that all non-trivial solutions in the first quadrant are unbounded. |
Databáze: | OpenAIRE |
Externí odkaz: |