On fractional Laplacian problems with indefinite nonlinearity
Autor: | Yongqiang Fu, Bingliang Li |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Applied Mathematics 010102 general mathematics Mathematical analysis Indefinite sum Function (mathematics) Mathematics::Spectral Theory Vector Laplacian 01 natural sciences Domain (mathematical analysis) 010101 applied mathematics Bounded function 0101 mathematics Laplacian matrix Laplace operator Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | Applicable Analysis. 96:2852-2868 |
ISSN: | 1563-504X 0003-6811 |
Popis: | In this paper, we study the existence of positive solutions for the following Laplacian problem with indefinite nonlinearitywhere is a bounded domain and a(x) is a sign-changing function. For suitable conditions on a(x) and p, we prove: there exists such that problem has a positive solution for and has no positive solution for , where is the first eigenvalue of the fractional Laplacian operator. |
Databáze: | OpenAIRE |
Externí odkaz: |