Fluorescent chemosensor for mercury(II) cations in an aqueous solution based on 4-acetylamino-1, 8-naphthalimide derivative containing the N-phenylazadithia-15-crown-5-ether receptor

Autor: Yu. V. Fedorov, A. S. Polyakova, Olga A. Fedorova, Pavel A. Panchenko
Rok vydání: 2021
Předmět:
Zdroj: Russian Chemical Bulletin. 70:1939-1945
ISSN: 1573-9171
1066-5285
Popis: The 4-acetylamino-1,8-naphthalimide derivative containing the N-phenylazadithia-15-crown-5-ether fragment in the N-aryl substituent at the imide nitrogen atom of the naphthalimide core was synthesized, and its cation-dependent spectral properties were studied. The resulting compound in the photoexcited state exhibits low-intensity fluorescence due to the process of electron transfer from the N-aryl group to the naphthalimide residue, which is confirmed by the data of quantum chemical calculations performed using the PM6 method. The binding of Hg2+ in an aqueous acetate buffer solution at pH 6.0 is accompanied by the formation of a 1: 1 metal—ligand complex in which the electron transfer is suppressed leading to fluorescence enhancement. The observed spectral changes were used for the determination of the stability constant K of the complex (logK = 6.51±0.03). The found limit of Hg2+ detection using the synthesized sensor (28 nmol L−1) is fairly close the maximum permissible concentration for mercury in drinking water. The study of the selectivity of complexation showed that the presence of Cu2+, Zn2+, Ni2+, Pb2+ Cd2+, Ca2+, Mg2+, and Fe2+ cations did not impede the determination of Hg2+. The presented results indicate that the synthesized chemosensor is promising as a selective and highly sensitive fluorescent reagent for Hg2+ ions in an aqueous solution.
Databáze: OpenAIRE