A comparative analysis of unsteady and steady Buongiorno's Williamson nanoliquid flow over a wedge with slip effects
Autor: | P. Sudarsana Reddy, R. Chandra Sekhar Reddy |
---|---|
Rok vydání: | 2020 |
Předmět: |
Environmental Engineering
General Chemical Engineering Ode 02 engineering and technology General Chemistry Mechanics Slip (materials science) 021001 nanoscience & nanotechnology Biochemistry Finite element method Thermophoresis 020401 chemical engineering Mass transfer 0204 chemical engineering Magnetohydrodynamics 0210 nano-technology Brownian motion Mathematics Dimensionless quantity |
Zdroj: | Chinese Journal of Chemical Engineering. 28:1767-1777 |
ISSN: | 1004-9541 |
DOI: | 10.1016/j.cjche.2020.04.016 |
Popis: | Comparison between unsteady and steady MHD Buongiorno's model Williamson nanoliquid flow through a wedge with slip effects, chemical reaction and radiation is made in this analysis. Thermophoresis and Brownian motion are also considered in this study. Appropriate similarity variables are presented to transmute the governing PDEs into the set of non-linear ODEs. The most widely authenticated finite element method is implemented to analyze these set of ODEs numerically. The behavior of concentration, temperature and velocity sketches for varied values of relevant parameters is numerically calculated and the outcomes are plotted through graphs. The numerical values of dimensionless rates of mass transfer, heat and velocity are also evaluated and depicted through tables. It is noted that with upsurging values of angle of wedge parameter, the distributions of temperature of the liquid intensify in both steady and unsteady cases. |
Databáze: | OpenAIRE |
Externí odkaz: |