Transfinite mean value interpolation

Autor: Christopher Dyken, Michael S. Floater
Rok vydání: 2009
Předmět:
Zdroj: Computer Aided Geometric Design. 26:117-134
ISSN: 0167-8396
DOI: 10.1016/j.cagd.2007.12.003
Popis: Transfinite mean value interpolation has recently emerged as a simple and robust way to interpolate a function f defined on the boundary of a planar domain. In this paper we study basic properties of the interpolant, including sufficient conditions on the boundary of the domain to guarantee interpolation when f is continuous. Then, by deriving the normal derivative of the interpolant and of a mean value weight function, we construct a transfinite Hermite interpolant and discuss various applications.
Databáze: OpenAIRE