Prediction of Hospitalization Using Machine Learning for Emergency Department Patients

Autor: Georgios Feretzakis, Aikaterini Sakagianni, Evangelos Loupelis, Dimitris Kalles, Vasileios Panteris, Lazaros Tzelves, Rea Chatzikyriakou, Nikolaos Trakas, Stavroula Kolokytha, Polyxeni Batiani, Zoi Rakopoulou, Aikaterini Tika, Stavroula Petropoulou, Ilias Dalainas, Vasileios Kaldis
Rok vydání: 2022
DOI: 10.3233/shti220422
Popis: The objective of this study was to evaluate the predictive capability of five machine learning models regarding the admission or discharge of emergency department patients. A Random Forest classifier outperformed other models with respect to the area under the receiver operating characteristic curve (AUC ROC).
Databáze: OpenAIRE