Reduced-Dimensional Polynomial Rooting-Based Multiple Parameter Estimation for Polarization Sensitive Coprime Arrays: A Full Array Extraction Perspective
Autor: | Jinqing Shen, Beizuo Zhu, Jianfeng Li, Yunfei Wang |
---|---|
Rok vydání: | 2020 |
Předmět: |
Coprime integers
Estimation theory Computer science Direction of arrival Estimator 020206 networking & telecommunications 02 engineering and technology Polarization (waves) Computer Science Applications symbols.namesake Polarization sensitive Lagrange multiplier 0202 electrical engineering electronic engineering information engineering symbols 020201 artificial intelligence & image processing Quadratic programming Electrical and Electronic Engineering Algorithm |
Zdroj: | Wireless Personal Communications. 114:731-748 |
ISSN: | 1572-834X 0929-6212 |
DOI: | 10.1007/s11277-020-07390-3 |
Popis: | Generally, multi-dimensional spectral peak search (SPS) in parameter estimation for polarization sensitive coprime linear arrays (PS-CLAs) requires heavy computational burden. To resolve this problem, we propose a search-free algorithm for multi-parameter estimation with PS-CLAs in this paper. Specifically, different from the decomposition algorithms, we first reconstruct the total received signal of PS-CLA as the signal extracted from a large uniform linear array, which enables to offer a spectrum function only with regard to direction of arrival (DOA) by utilizing rank reduction estimator. Subsequently, we employ the polynomial root finding technique instead of one-dimensional SPS to directly calculate the DOA estimates. Furthermore, a quadratic optimization problem is established for the polarization parameters and in particular, the closed-form solutions are provided by utilizing Lagrange multiplier approach. Finally, numerical simulations illustrate that the proposed search-free algorithm can obtain improved estimation accuracy with remarkably low complexity. |
Databáze: | OpenAIRE |
Externí odkaz: |