Plug-and-Play: Improve Depth Prediction via Sparse Data Propagation

Autor: Juan-Ting Lin, Yi-Hsuan Tsai, Min Sun, Tsun-Hsuan Wang, Fu-En Wang, Wei-Chen Chiu
Rok vydání: 2019
Předmět:
Zdroj: ICRA
DOI: 10.1109/icra.2019.8794404
Popis: We propose a novel plug-and-play (PnP) module for improving depth prediction with taking arbitrary patterns of sparse depths as input. Given any pre-trained depth prediction model, our PnP module updates the intermediate feature map such that the model outputs new depths consistent with the given sparse depths. Our method requires no additional training and can be applied to practical applications such as leveraging both RGB and sparse LiDAR points to robustly estimate dense depth map. Our approach achieves consistent improvements on various state-of-the-art methods on indoor (i.e., NYU-v2) and outdoor (i.e., KITTI) datasets. Various types of LiDARs are also synthesized in our experiments to verify the general applicability of our PnP module in practice.
Databáze: OpenAIRE