Abstract Zobrist Hashing: An Efficient Work Distribution Method for Parallel Best-First Search
Autor: | Yuu Jinnai, Alex Fukunaga |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Proceedings of the AAAI Conference on Artificial Intelligence. 30 |
ISSN: | 2374-3468 2159-5399 |
DOI: | 10.1609/aaai.v30i1.10065 |
Popis: | Hash Distributed A* (HDA*) is an efficient parallel best first algorithm that asynchronously distributes work among the processes using a global hash function. Although Zobrist hashing, the standard hash function used by HDA*, achieves good load balance for many domains, it incurs significant communication overhead since it requires many node transfers among threads. We propose Abstract Zobrist hashing, a new work distribution method for parallel search which reduces node transfers and mitigates communication overhead by using feature projection functions. We evaluate Abstract Zobrist hashing for multicore HDA*, and show that it significantly outperforms previous work distribution methods. |
Databáze: | OpenAIRE |
Externí odkaz: |