Genomic architecture of Autism Spectrum Disorder from comprehensive whole-genome sequence annotation

Autor: Brett Trost, Bhooma Thiruvahindrapuram, Ada J.S. Chan, Worrawat Engchuan, Edward J. Higginbotham, Jennifer L. Howe, Livia O. Loureiro, Miriam S. Reuter, Delnaz Roshandel, Joe Whitney, Mehdi Zarrei, Matthew Bookman, Cherith Somerville, Rulan Shaath, Mona Abdi, Elbay Aliyev, Rohan V. Patel, Thomas Nalpathamkalam, Giovanna Pellecchia, Omar Hamdan, Gaganjot Kaur, Zhuozhi Wang, Jeffrey R. MacDonald, John Wei, Wilson W.L. Sung, Sylvia Lamoureux, Ny Hoang, Thanuja Selvanayagam, Nicole Deflaux, Melissa Geng, Siavash Ghaffari, John Bates, Edwin J. Young, Qiliang Ding, Carole Shum, Lia D’abate, Clarissa A. Bradley, Annabel Rutherford, Vernie Aguda, Beverly Apresto, Nan Chen, Sachin Desai, Xiaoyan Du, Matthew L.Y. Fong, Sanjeev Pullenayegum, Kozue Samler, Ting Wang, Karen Ho, Tara Paton, Sergio L. Pereira, Jo-Anne Herbrick, Richard F. Wintle, Jonathan Fuerth, Juti Noppornpitak, Heather Ward, Patrick Magee, Ayman Al Baz, Usanthan Kajendirarajah, Sharvari Kapadia, Jim Vlasblom, Monica Valluri, Joseph Green, Vicki Seifer, Morgan Quirbach, Olivia Rennie, Elizabeth Kelley, Nina Masjedi, Catherine Lord, Michael J. Szego, Ma’n H. Zawati, Michael Lang, Lisa J. Strug, Christian R. Marshall, Gregory Costain, Kristina Calli, Alana Iaboni, Afiqah Yusuf, Patricia Ambrozewicz, Louise Gallagher, David G. Amaral, Jessica Brian, Mayada Elsabbagh, Stelios Georgiades, Daniel S. Messinger, Sally Ozonoff, Jonathan Sebat, Calvin Sjaarda, Isabel M. Smith, Peter Szatmari, Lonnie Zwaigenbaum, Azadeh Kushki, Thomas W. Frazier, Jacob A.S. Vorstman, Khalid A. Fakhro, Bridget A. Fernandez, M.E. Suzanne Lewis, Rosanna Weksberg, Marc Fiume, Ryan K.C. Yuen, Evdokia Anagnostou, Neal Sondheimer, David Glazer, Dean M. Hartley, Stephen W. Scherer
Rok vydání: 2022
Popis: Fully understanding the genetic factors involved in Autism Spectrum Disorder (ASD) requires whole-genome sequencing (WGS), which theoretically allows the detection of all types of genetic variants. With the aim of generating an unprecedented resource for resolving the genomic architecture underlying ASD, we analyzed genome sequences and phenotypic data from 5,100 individuals with ASD and 6,212 additional parents and siblings (total n=11,312) in the Autism Speaks MSSNG Project, as well as additional individuals from other WGS cohorts. WGS data and autism phenotyping were based on high-quality short-read sequencing (>30x coverage) and clinically accepted diagnostic measures for ASD, respectively. For initial discovery of ASD-associated genes, we used exonic sequence-level variants from MSSNG as well as whole-exome sequencing-based ASD data from SPARK and the Autism Sequencing Consortium (>18,000 trios plus additional cases and controls), identifying 135 ASD-associated protein-coding genes with false discovery rate SCN2A and a nuclear mitochondrial insertion impacting SYNGAP1. Polygenic risk scores did not differ between children with ASD in multiplex families versus simplex, and rare, damaging recessive events were significantly depleted in multiplex families, collectively suggesting that rare, dominant variation plays a predominant role in multiplex ASD. Our study provides a guidebook for exploring genotype-phenotype correlations in the 15-20% of ASD families who carry ASD-associated rare variants, as well as an entry point to the larger and more diverse studies that will be required to dissect the etiology in the >80% of the ASD population that remains idiopathic. All data resulting from this study are available to the medical genomics research community in an open but protected manner.
Databáze: OpenAIRE