Validation of a Fertilizer Potential Acidity Model to Predict the Effects of Water-soluble Fertilizer on Substrate pH

Autor: John A. Biernbaum, William R. Argo, Paul R. Fisher
Rok vydání: 2014
Předmět:
Zdroj: HortScience. 49:1061-1066
ISSN: 2327-9834
0018-5345
DOI: 10.21273/hortsci.49.8.1061
Popis: Two experiments were run to validate a “Nitrogen Calcium Carbonate Equivalence (CCE)” model that predicts potential fertilizer basicity or acidity based on nitrogen (N) form and concentration for floriculture crops grown with water-soluble fertilizer in containers with minimal leaching. In one experiment, nine bedding plant species were grown for 28 days in a peat-based substrate using one of three nutrient solutions (FS) composed of three commercially available water-soluble fertilizers that varied in ammonium to nitrate (NH4+:NO3–) ratio (40:60, 25:75, or 4:96) mixed with well water with 130 mg·L−1 calcium carbonate (CaCO3) alkalinity. Both the ammonium-nitrogen (NH4-N) content of the FS and plant species affected substrate pH. Predicted acidity or basicity of the FS for Impatiens walleriana Hook.f. (impatiens), Petunia ×hybrida E. Vilm. (petunia), and Pelargonium hortorum L.H. Bailey (pelargonium) from the Nitrogen CCE model was similar to observed pH change with an adjusted R2 of 0.849. In a second experiment, water alkalinity (0 or 135.5 mg·L−1 CaCO3), NH4+:NO3– ratio (75:25 or 3:97), and N concentration (50, 100, or 200 mg·L−1 N) in the FS were varied with impatiens. As predicted by the N CCE model, substrate pH decreased as NH4+ concentration increased and alkalinity decreased with an adjusted R2 of 0.763. Results provide confidence in the N CCE model as a tool for fertilizer selection to maintain stable substrate pH over time. The limited scope of these experiments emphasizes the need for more research on plant species effects on substrate pH and interactions with other factors such as residual limestone and substrate components to predict pH dynamics of containerized plants over time.
Databáze: OpenAIRE