Electronically Stimulated Degradation of Crystalline Silicon Solar Cells
Autor: | R. Jones, J Adey, Daniel Macdonald, Jan Schmidt, Karsten Bothe, D.W. Palmer |
---|---|
Rok vydání: | 2005 |
Předmět: |
inorganic chemicals
Materials science Silicon business.industry Nanocrystalline silicon Mineralogy chemistry.chemical_element Quantum dot solar cell Copper indium gallium selenide solar cells Polymer solar cell law.invention Monocrystalline silicon chemistry law Solar cell Optoelectronics Crystalline silicon business |
Zdroj: | MRS Proceedings. 864 |
ISSN: | 1946-4274 0272-9172 |
Popis: | Carrier lifetime degradation in crystalline silicon solar cells under illumination with white light is a frequently observed phenomenon. Two main causes of such degradation effects have been identified in the past, both of them being electronically driven and both related to the most common acceptor element, boron, in silicon: (i) the dissociation of iron-boron pairs and (ii) the formation of recombination-active boron-oxygen complexes. While the first mechanism is particularly relevant in metal-contaminated solar-grade multicrystalline silicon materials, the latter process is important in monocrystalline Czochralski-grown silicon, rich in oxygen. This paper starts with a short review of the characteristic features of the two processes. We then briefly address the effect of iron-boron dissociation on solar cell parameters. Regarding the boron-oxygen-related degradation, the current status of the physical understanding of the defect formation process and the defect structure are presented. Finally, we discuss different strategies for effectively avoiding the degradation. |
Databáze: | OpenAIRE |
Externí odkaz: |