D-IMPACT: A Data Preprocessing Algorithm to Improve the Performance of Clustering

Autor: Tu Kien T. Le, Kenji Satou, Vu Anh Tran, Mamoru Kubo, Xuan Tho Dang, Osamu Hirose, Thammakorn Saethang, Duc Luu Ngo, Gavrilov Sergey, Lan Anh T. Nguyen, Yoichi Yamada
Rok vydání: 2014
Předmět:
Zdroj: Journal of Software Engineering and Applications. :639-654
ISSN: 1945-3124
1945-3116
DOI: 10.4236/jsea.2014.78059
Popis: In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.
Databáze: OpenAIRE