On Identities with Composition of Generalized Derivations
Autor: | Münevver Pınar Eroğlu, Nurcan Argaç |
---|---|
Rok vydání: | 2017 |
Předmět: |
Ring (mathematics)
Pure mathematics General Mathematics Existential quantification 010102 general mathematics Closure (topology) Centroid 010103 numerical & computational mathematics Composition (combinatorics) 01 natural sciences Set (abstract data type) Prime ring 0101 mathematics Quotient Mathematics |
Zdroj: | Canadian Mathematical Bulletin. 60:721-735 |
ISSN: | 1496-4287 0008-4395 |
DOI: | 10.4153/cmb-2016-072-4 |
Popis: | Let R be a prime ring with extended centroid C, Q maximal right ring of quotients of R, RC central closure of R such that dim C(RC) > , ƒ (X1, . . . , Xn) a multilinear polynomial over C that is not central-valued on R, and f (R) the set of all evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R. Suppose that G is a nonzero generalized derivation of R such that G2(u)u ∈ C for all u ∈ ƒ(R). |
Databáze: | OpenAIRE |
Externí odkaz: |