Error Estimation by Means of Richardson Extrapolation with the Boundary Element Method in a Dirichlet Problem for the Laplace Equation
Autor: | S. Pomeranz |
---|---|
Rok vydání: | 2011 |
Předmět: |
Laplace's equation
Dirichlet problem High Energy Physics::Lattice Mathematical analysis Richardson extrapolation Mixed boundary condition Dirichlet's energy Elliptic boundary value problem symbols.namesake Dirichlet boundary condition symbols Computer Science::Symbolic Computation Boundary value problem Mathematics |
Zdroj: | Integral Methods in Science and Engineering ISBN: 9780817682378 |
DOI: | 10.1007/978-0-8176-8238-5_30 |
Popis: | Richardson extrapolation can be used to improve the accuracy of numerical solutions for the normal boundary flux and the interior potential resulting from the boundary element method applied to a Dirichlet problem for the Laplace equation. Using numerical results related to the Richardson extrapolation, a technique will be developed that predicts the reliability of the Richardson extrapolation results. |
Databáze: | OpenAIRE |
Externí odkaz: |