Local properties of Jacobson-Witt algebras
Autor: | Kaiming Zhao, Yu-Feng Yao |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics::Number Theory Mathematics::Rings and Algebras 010102 general mathematics 0211 other engineering and technologies 021107 urban & regional planning 02 engineering and technology 01 natural sciences Simple (abstract algebra) Lie algebra Prime characteristic 0101 mathematics Algebra over a field Mathematics |
Zdroj: | Journal of Algebra. 586:1110-1121 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2021.07.025 |
Popis: | This paper studies local properties of Jacobson-Witt algebras over fields of prime characteristic, i.e., initiates the study on 2-local derivations of Lie algebras of prime characteristic. Let W n be a simple Jacobson-Witt algebra over a field F of prime characteristic p with | F | ≥ p n . In this paper, it is shown that every 2-local derivation on W n is a derivation. |
Databáze: | OpenAIRE |
Externí odkaz: |