Mechanical, morphological, thermal properties and hydrolytic degradation behavior of polylactic acid/polypropylene carbonate blends prepared by solvent casting
Autor: | Sharifah Imihezri Syed Shaharuddin, Yose Fachmi Buys, Norhashimah Shaffiar, Nurul Assadiqah Haris, Intan Najwa Humaira Mohamed Haneef, Abdul Malek Abdul Hamid |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Materials science Polymers and Plastics General Chemistry Polymer Miscibility Polyester chemistry.chemical_compound Differential scanning calorimetry chemistry Polylactic acid Chemical engineering Materials Chemistry Polypropylene carbonate Fourier transform infrared spectroscopy Glass transition |
Zdroj: | Polymer Engineering & Science. 60:2876-2886 |
ISSN: | 1548-2634 0032-3888 |
DOI: | 10.1002/pen.25519 |
Popis: | The preparation of polylactic acid (PLA) and polypropylene carbonate (PPC) blend films by using the solvent casting method is to improve the properties of pure PLA. The blends' mechanical and thermal properties, morphological as well as hydrolytic degradation behavior are evaluated. The tensile test proved that the increase of PPC from 0 wt% to 75 wt% could improve the elongation of pure PLA when the graph showed a significant increase of the elongation from 10% to 1000%. Scanning Electron Microscopy (SEM) supported the significant increase in elongation of the blends when it shows a definite phase separation in 75/25 PLA/PPC, where 25% of PPC has formed islands in the PLA matrix. Differential scanning calorimetry indicates the partial miscibility of the blends where two peaks of the glass transition temperature moved towards each other when the amount of PPC increases. Fourier transform infrared (FTIR) spectroscopy revealed a possible intermolecular interaction between two polymers, which affects the miscibility of the blends. Finally, the hydrolytic degradation test indicates that the degradation started from the PLA phase and the blends' degradation rate decrease as wt% of PPC increase |
Databáze: | OpenAIRE |
Externí odkaz: |