Recombination mechanism in low-dimensional nitride semiconductors

Autor: Giichi Marutsuki, Koichi Okamoto, Fritz Henneberger, Shigeo Fujita, Yoichi Kawakami, Akio Kaneta, Fuminori Satou, Yukio Narukawa, Tsutomu Inoue, Takashi Mukai, Yoshihito Narita
Rok vydání: 2003
Předmět:
Zdroj: SPIE Proceedings.
ISSN: 0277-786X
DOI: 10.1117/12.480854
Popis: Scanning near field optical microscopy (SNOM) has been developed to assess the recombination mechanism in low-dimensional nitride semiconductors by employing spatial and temporal photoluminescence (PL) mapping under illumination-collection at cryogenic temperatures. The near-field PL images taken at an InxGa1-xN single-quantum-well (SQW) structure revealed the variation of both intensity and peak energy according to the probing location with the scale less than a few tens of a nanometer. The PL, the linewidth of which was about 60meV in macroscopic measurements, was separated into several peaks with the linewidth of about 12 meV if the SNOM-PL was taken with the aperture size of 30 nm. Clear spatial correlation was observed between PL intensity and PL peak-photon-energy, where the regions of strong PL intensity correspond to those of low PL peak-photon-energy. Time-resolved SNOM-PL study showed the important role of exciton/carrier localization in the recombination mechanism in InxGa1-xN-based quantum structures.
Databáze: OpenAIRE