Absolutely Continuous Spectrum for the Anderson Model on a Tree: A Geometric Proof of Klein’s Theorem
Autor: | Wolfgang Spitzer, David Hasler, Richard Froese |
---|---|
Rok vydání: | 2006 |
Předmět: |
Bethe lattice
Hyperbolic geometry Continuous spectrum Spectrum (functional analysis) Existence theorem Statistical and Nonlinear Physics Condensed Matter::Disordered Systems and Neural Networks Combinatorics Anderson orthogonality theorem Condensed Matter::Strongly Correlated Electrons Anderson impurity model Mathematical Physics Lattice model (physics) Mathematical physics Mathematics |
Zdroj: | Communications in Mathematical Physics. 269:239-257 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-006-0120-3 |
Popis: | We give a new proof of a version of Klein’s theorem on the existence of absolutely continuous spectrum for the Anderson model on the Bethe Lattice at weak disorder. |
Databáze: | OpenAIRE |
Externí odkaz: |