Mechanism of Heme Oxygenase-1 Gene Activation by Cadmium in MCF-7 Mammary Epithelial Cells

Autor: Claire Wicks, Sherrie L. Otterbein, Jawed Alam, Pengfei Gong, Daniel Stewart, Cheri Touchard, Augustine M.K. Choi, Matthew E. Burow, Jen Sie Tou
Rok vydání: 2000
Předmět:
Zdroj: Journal of Biological Chemistry. 275:27694-27702
ISSN: 0021-9258
DOI: 10.1074/jbc.m004729200
Popis: The mouse heme oxygenase-1 (HO-1) gene, ho-1, contains two inducible enhancers, E1 and E2. Of several cell lines tested, induction of an E1/luciferase fusion construct, pE1-luc, by CdCl(2) is most pronounced in MCF-7 cells. In these cells, E1, but not E2, is necessary and sufficient for ho-1 gene activation. Exposure of MCF-7 cells to 10 micrometer CdCl(2) stimulates phosphorylation of ERK, JNK, and p38 mitogen-activated protein kinases, implicating one or more of these signaling pathways in ho-1 gene induction. SB203580, an inhibitor of p38, diminishes cadmium-stimulated pE1-luc expression and HO-1 mRNA levels by up to 70-80%. PD098059, an ERK pathway inhibitor, does not affect HO-1 mRNA induction at the highest concentration (40 micrometer) tested. Similarly, co-expression of a dominant-negative mutant of p38alpha, but not of ERK1, ERK2, JNK1, or JNK2, reduces basal and cadmium-induced pE1-luc activity. E1 contains binding sites for the activator protein-1 (Fos/Jun), Cap'n'Collar/basic leucine zipper (CNC-bZIP), and CCAAT/enhancer-binding protein (C/EBP) families of transcription factors. A dominant-negative mutant of Nrf2 (a CNC-bZIP member), but not of c-Jun or C/EBPbeta, inhibits pE1-luc activation by cadmium. Induction of the endogenous ho-1 gene is also inhibited by the Nrf2 mutant. Mutations of E1 that inhibit cadmium inducibility also suppress the trans-activation and DNA binding activities of Nrf2, and SB203580, but not PD098059, attenuates Nrf2-mediated trans-activation of pE1-luc. Taken together, these results indicate that cadmium induces ho-1 gene expression via sequential activation of the p38 kinase pathway and Nrf2.
Databáze: OpenAIRE