Relationship between the microstructures and Young’s modulus of 3D-networked porous carbon material

Autor: Yutaro Arai, Ryo Inoue, Yasuo Kogo, Yuka Daigo, E. Kojo
Rok vydání: 2021
Předmět:
Zdroj: Journal of Materials Science. 56:10338-10352
ISSN: 1573-4803
0022-2461
Popis: Herein, we prepared 3D-networked porous carbon materials (TNPCs) (porosity ≈ 70%, average pore size ≈ 10 μm, density ≈ 0.37 g cm–3) composed of glassy carbon via pyrolysis of porous phenolic precursors. A compressive test for TNPCs shows that the Young’s moduli and compressive strength of TNPCs ranged from 0.7 to 1.5 GPa and 11 to 30 MPa, respectively, which increased with increasing pore diameter. Although these moduli could not be accurately predicted using conventional periodic unit cell models, the homogenized Young’s moduli predicted using a 3D image-based model acquired by X-ray computed tomography and focused ion beam scanning electron microscopy were in good agreement with the experimental values. These results indicate that the method can be used to reliably investigate the microstructures and evaluate the Young’s modulus using 3D image-based modeling.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje