Deep learning approaches for speech emotion recognition: state of the art and research challenges

Autor: Faiqa Hanif, Ghulam Mujtaba, Rashid Jahangir, Ying Wah Teh
Rok vydání: 2021
Předmět:
Zdroj: Multimedia Tools and Applications. 80:23745-23812
ISSN: 1573-7721
1380-7501
DOI: 10.1007/s11042-020-09874-7
Popis: Speech emotion recognition (SER) systems identify emotions from the human voice in the areas of smart healthcare, driving a vehicle, call centers, automatic translation systems, and human-machine interaction. In the classical SER process, discriminative acoustic feature extraction is the most important and challenging step because discriminative features influence the classifier performance and decrease the computational time. Nonetheless, current handcrafted acoustic features suffer from limited capability and accuracy in constructing a SER system for real-time implementation. Therefore, to overcome the limitations of handcrafted features, in recent years, variety of deep learning techniques have been proposed and employed for automatic feature extraction in the field of emotion prediction from speech signals. However, to the best of our knowledge, there is no in-depth review study is available that critically appraises and summarizes the existing deep learning techniques with their strengths and weaknesses for SER. Hence, this study aims to present a comprehensive review of deep learning techniques, uniqueness, benefits and their limitations for SER. Moreover, this review study also presents speech processing techniques, performance measures and publicly available emotional speech databases. Furthermore, this review also discusses the significance of the findings of the primary studies. Finally, it also presents open research issues and challenges that need significant research efforts and enhancements in the field of SER systems.
Databáze: OpenAIRE